学术交流
学术交流
首页  >  学术科研  >  学术交流  >  正文

    【学术讲座】Large Deviations of Fractional Stochastic Equations on Unbounded Domains

    2024-05-26 数学中心 点击:[]

    伟德bevictor中文版
    创源大讲堂研究生学术讲座
    海 报

    题目:Large Deviations of Fractional Stochastic Equations on Unbounded Domains

    报告人:王碧祥,  New Mexico Institute of Mining and Technology,  教授

    时间:  0528日(周二)下午15: 30-16: 30

    地点:30456

    摘要:In this talk, we discuss the large deviation principle of the non-local fractional stochastic reaction-diffusion equations with a polynomial drift of arbitrary degree driven by multiplicative noise defined on unbounded domains. We first prove the strong convergence of the solutions of a control equation with respect to the weak topology of controls, and then show the convergence in distribution of the solutions of the stochastic equation when the noise intensity approaches zero. We finally establish the large deviations of the stochastic equation by the weak convergence method. The main difficulty of the paper is caused by the non-compactness of Sobolev embeddings on unbounded domains, and the idea of uniform tail-ends estimates is employed to circumvent the obstacle in order to obtain the tightness of distribution laws of the stochastic equation and the precompactness of the control equation.

    个人简介:王碧祥,美国新墨西哥矿业理工大学数学系终身教授,主要从事无穷维动力系统和非线性偏微分方程理论与应用等领域的研究。目前已发表SCI 论文150余篇,研究主要成果发表于《Mathematische Annalen,Transactions of the American Mathematical Society,Journal of Functional Analysis,SIAM Journal on Applied Dynamical Systems》,《Proceedings of the American Mathematical Society,Journal of Differential Equations,Science China Mathematics,Stochastic Processes and their Applications ,Nonlinearity,Physica D: Nonlinear Phenomena,Journal of Dynamics and Differential Equations》等多个国际知名数学学术期刊上。



                                        主办:伟德bevictor中文版研究生院  

                                        承办:bevictor伟德官网

                                                    伟德bevictor中文版数学中心


    上一条:【学术讲座】Communication-Efficient Pilot Estimation for Non-Randomly Distributed Data in Diverging Dimensions
    下一条:【学术讲座】Stability of isometries and norm-additive maps between Banach spaces

    关闭